Roll No. \qquad

F-3851

M.A./M.Sc. (Previous) Examination, 2022 MATHEMATICS
 PAPER FIRST (Advanced Abstract Algebra)

Time : Three Hours]
[Maximum Marks:100

Note : Attempt any two parts from each question. All questions carry equal marks.

Unit - 1

1. (A) State and prove Jordan-Holder Theorem for finite group.
(B) Prove that every subgroup of solvable group is solvable.
(C) Define algebraic extension of a field and show that every finite extension of a field is an algebraic extension.

Unit - 2

2. (A) Find the Galois group of $x^{3}-2 \in Q[x]$.
(B) State and prove Artin theorem.
(C) Show that the polynomial $x^{5}-9 x+3$ is not solvable by radical over Q.

Unit - 3

3. (A) Prove that the necessary and sufficient condition for an R-module M to be a direct sum of its two submodules N_{1} and N_{2} are that
(i) $M=N_{1}+N_{2}$ and,
(ii) $N_{1} \cap N_{2}=\{0\}$
(B) Prove that every submodules and every quotient modules of a noetherian module is noetherian.
(C) State and prove Hilbert basis theorem.

F-3851

Unit - 4

4. (A) Let U and V be two vector spaces over a field F of dimensions m and n respectively. Then prove that Hom ($\mathrm{U} V$) is a vector space over F of dimension mn.
(B) Let $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \ldots \ldots . \lambda_{k} \in F$ be distinct characteristics roots of $T \in A(\mathrm{~V})$ and let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . . \mathrm{v}_{\mathrm{k}}$ be characteristic vector of T belonging to $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \lambda_{k}$ respectively. Then prove that v_{1}, $\mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ are linearly independent over F .
(C) Prove that the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right]$ is nilpotent and find its invariants and Jordan form.

Unit - 5

5. (A) Obtain the smith normal form and rank for the following matrix over $\mathrm{Q}[x]$

$$
\left[\begin{array}{ccc}
-x-3 & 2 & 0 \\
1 & -x & 1 \\
1 & -3 & -x-2
\end{array}\right]
$$

(B) State and prove fundamental structure theorem for finitely generated modules over a principal ideal domain.
(C) Find rational canonical form of the following matrix over Q

$$
A=\left[\begin{array}{ccc}
-3 & 2 & 0 \\
1 & 0 & 1 \\
1 & -3 & -2
\end{array}\right]
$$

